Chem. Ber. 115, 1399 - 1408 (1982)

Untersuchungen zur Synthese oktaedrischer Nitrosylchrom-Komplexe aus (Benzol)tricarbonylchrom

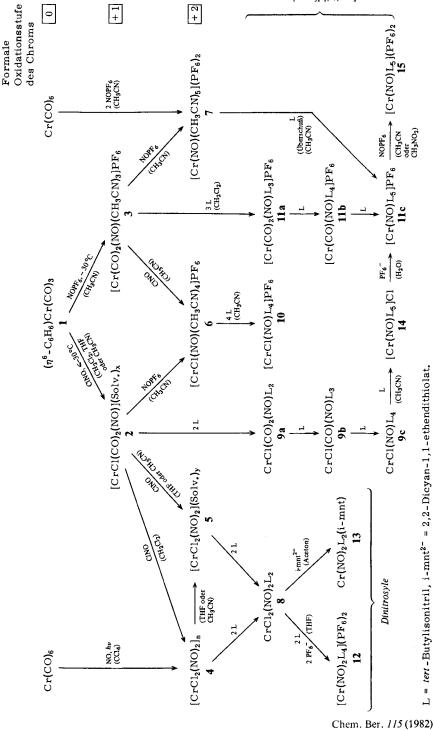
Max Herberhold* und Ludwig Haumaier

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 3008, D-8580 Bayreuth

Eingegangen am 13. August 1981

Durch Umsetzung von (Benzol)tricarbonylchrom (1) mit ClNO oder NOPF₆ in Lösung (CH₂Cl₂, THF oder CH₃CN) lassen sich solvatisierte Mono- und Dinitrosylchrom-Zwischenstufen erhalten, die zur Synthese von oktaedrischen Nitrosylchrom-Verbindungen dienen können. Als Beispiel wird die Darstellung der *tert*-Butylisonitril-Komplexe $CrCl_2(NO)_2L_2$ (8), $CrCl(CO)_n(NO)L_{4-n}$ (n=2, 1 und 0) (9a-c), $[CrCl(NO)L_4]PF_6$ (10), $[Cr(CO)_n(NO)L_{5-n}]PF_6$ (n=2, 1 und 0) (11a-c), $[Cr(NO)_2L_4](PF_6)_2$ (12) und $Cr(NO)_2L_2[S_2C=C(CN)_2]$ (13) beschrieben (L=tert-Butylisonitril). Die Konstitutionen der neuen Komplexe werden anhand ihrer IR- und 1 H-NMR-Spektren diskutiert.

Studies Related to the Synthesis of Octahedral Nitrosylchromium Complexes from (Benzene)tricarbonylchromium


The reaction of (benzene)tricarbonylchromium (1) with either ClNO or NOPF₆ in solution $(CH_2Cl_2, THF \text{ or } CH_3CN)$ leads to solvated mono- and dinitrosylchromium intermediates which may be used for the synthesis of octahedral nitrosylchromium compounds. This is shown by the preparation of the *tert*-butyl isocyanide (L) complexes $CrCl_2(NO)_2L_2$ (8), $CrCl(CO)_n(NO)L_{4-n}$ (n = 2, 1 and 0) (9a - c), $[CrCl(NO)L_4]PF_6$ (10), $[Cr(CO)_n(NO)L_{5-n}]PF_6$ (n = 2, 1 and 0) (11a - c), $[Cr(NO)_2L_4](PF_6)_2$ (12), and $Cr(NO)_2L_2[S_2C = C(CN)_2]$ (13). The structures of the new complexes are discussed on the basis of their IR and ¹H NMR spectra.

Bei unseren Untersuchungen über Nitrosylchrom-Komplexe hatten wir die Erfahrung gemacht, daß Carbonylchrom-Verbindungen wie Hexacarbonylchrom, Cr(CO)₆¹⁾, oder (Aromat)tricarbonylchrom, ArCr(CO)₃ (Ar = Benzol, Toluol, Mesitylen, Hexamethylbenzol)²⁻⁴⁾, als leicht zugängliche Ausgangsverbindungen für oktaedrische Nitrosylchrom-Komplexe verwendet werden können. Im folgenden berichten zusammenfassend wir über Umsetzungen von (Benzol)tricarbonylchrom, $(\eta^6-C_6H_6)Cr(CO)_3$ (1), mit Nitrosylchlorid, ClNO, und Nitrosylhexafluorophosphat, $NO^+PF_6^-$, die unter stufenweiser Abspaltung von Benzol- und CO-Liganden zu präparativ nutzbaren Mono- und Dinitrosylchrom-Zwischenstufen führen. Das synthetische Potential der Methode wird am Beispiel der Darstellung von tert-Butylisonitril-Komplexen demonstriert.

1. Erzeugung der Nitrosylchrom-Zwischenstufen

Die Umsetzung von 1 mit ClNO in Lösung wurde bereits beschrieben^{2,3)}. Mit 1 Moläquivalent ClNO entsteht unterhalb -30 °C zunächst unter Abspaltung des Aromaten

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/0404 – 1399 \$ 02.50/0

Schema 1. Übersicht über die Nitrosylchrom-Komplexe, die aus $(\eta^6$ -C $_6$ H $_6$)Cr $(CO)_3$ (1) zugänglich sind

əxəldmo**y-**l**ullu**os**l**

und eines CO-Liganden die solvensstabilisierte Zwischenstufe [CrCl(CO)₂(NO)]-(Solv.)_x (2) (Solv. = CH_2Cl_2 , THF oder CH_3CN) (Schema 1). Mit einem weiteren Moläquivalent ClNO reagiert 2 dann unter Verlust der beiden restlichen CO-Liganden zu Dinitrosylchrom-Komplexen weiter; je nach Art des Lösungsmittels wird das orangebraune Polymere [CrCl₂(NO)₂]_n (4) oder ein solvensstabilisiertes Komplexfragment [CrCl₂(NO)₂](Solv.)_y (5) (Solv. = THF oder CH_3CN) erhalten³⁾. Die beiden Reaktionsschritte von 1 nach 2 und von 2 nach 4 bzw. 5 können als oxidative Nitrosylierungen angesehen werden; dabei steigt die formale Oxidationsstufe des Chroms von ± 0 über +1 auf +2 an. Während die Oxidation von 1 in CH_2Cl_2 -Lösung auch in Gegenwart von überschüssigem ClNO auf der Stufe von 4 stehenbleibt, wird 5 in THF- oder CH_3CN -Lösung durch überschüssiges ClNO – unter Abspaltung sämtlicher NO-Liganden – weiteroxidiert; als Endprodukte können $CrCl_3 \cdot 3$ THF bzw. $CrCl_3 \cdot 3$ CH_3CN isoliert werden.

Ähnlich wie mit dem kovalenten CINO reagiert 1 auch mit dem Salz NOPF₆ in Acetonitril bei $-30\,^{\circ}$ C unter Bildung eines solvensstabilisierten [Cr(CO)₂(NO)]-Fragments, für das die Formulierung "[Cr(CO)₂(NO)(CH₃CN)₃]PF₆" (3) vorgeschlagen wird. Obwohl 3 nicht in Substanz isoliert werden konnte, läßt sich die Bildung eines Kations aus den hohen Frequenzen des *cis*-Dicarbonylnitrosylchrom-Musters im IR-Spektrum ableiten (ν (CO) 2068 und 1990, ν (NO) 1728 cm⁻¹ in CH₂Cl₂). Die Acetonitril-Liganden dieses Kations geben sich im IR-Spektrum durch zwei ν (CN)-Absorptionen (2320 und 2298 cm⁻¹ in CH₂Cl₂) zu erkennen, das ¹H-NMR-Spektrum zeigt zwei Singuletts im Intensitätsverhältnis 1:2 bei δ = 2.40 und 2.37 (in CDCl₁) (Tab.).

Das Monokation des Salzes 3 wird durch NOPF₆ unter Eliminierung der beiden CO-Liganden zum Dikation des Salzes 7 oxidiert. Im Gegensatz zur Reaktion von 2 mit ClNO tritt bei der Umsetzung von 3 zu 7 kein zweiter NO-Ligand in den Komplex ein. In entsprechender Weise reagiert 3 mit ClNO zu 6; wiederum wird kein zweiter NO-Ligand koordiniert, obwohl das Chlor des Nitrosylchlorids als Chloro-Ligand gebunden wird. 6 entsteht auch aus der Zwischenstufe 2 durch Oxidation mit NOPF₆ in Acetonitril-Lösung (Schema 1).

Analog führt die direkte Oxidation von Cr(CO)₆ mit NOPF₆ in Acetonitril-Lösung nur zum Mononitrosyl-Komplex 7^{4,5)}.

2. Darstellung von Nitrosylchrom-Komplexen mit tert-Butylisonitril-Liganden

Die Stabilisierung der Nitrosylchrom-Zwischenkomplexe 2-7 durch tert-Butylisonitril (L) ermöglicht eine gezielte Synthese von bekannten und neuen tert-Butylisonitril-

Chem. Ber. 115 (1982)

Komplexen (Schema 1). Sowohl die locker gebundenen Solvens-Moleküle als auch die noch vorhandenen CO-Liganden können durch L substituiert werden. Dabei läßt sich die Art der Produkte auch durch die Wahl des Solvens steuern.

So ergibt die Reaktion von $[CrCl(CO)_2(NO)](Solv.)_x$ (2) mit $L = (CH_3)_3C - N \equiv C$ in CH_2Cl_2 primär hauptsächlich $CrCl(CO)_2(NO)L_2$ (9a), während in THF – unabhängig vom Molverhältnis 2: L – stets eine rasche Umwandlung von 9a in $CrCl(CO)(NO)L_3$ (9b) beobachtet wird. In Acetonitril-Lösung bildet sich dagegen bevorzugt das violette Salz $[Cr(NO)L_5]Cl$ (14), das aus wäßriger Lösung mit NH_4PF_6 als schwerlösliches $[Cr(NO)L_5]PF_6$ (11c) gefällt werden kann⁴). Der Dicarbonyl-Komplex 9a ließ sich nicht in Substanz isolieren: Beim Versuch, 9a zu kristallisieren, entstand stets unter teilweiser Zersetzung 9b. Auch der Monocarbonyl-Komplex 9b konnte nur schwer in reiner Form erhalten werden; das Produkt ist meist durch 9a oder 9c verunreinigt. Chromatographie von 9a oder 9b an Kieselgel führt zum Verlust aller CO-Liganden und zur Bildung von $CrCl(NO)L_4$ (9c) und $[Cr(NO)L_5]Cl$ (14).

Für die drei neuen Komplexe 9a - c schlagen wir Strukturen vor, bei denen der NO-Ligand in *trans*-Position zum Chloro-Liganden steht:

Diese Strukturzuordnung stützt sich auf die folgenden IR- und ¹H-NMR-spektroskopischen Indizienbeweise: In 9a müssen aufgrund des IR-Spektrums, das zwei v(CO)und zwei v(NC)-Absorptionen zeigt (Tab.), sowohl die beiden CO-Liganden als auch die beiden Isonitril-Liganden jeweils cis-ständig zueinander angeordnet sein. Bei 9b deutet das Intensitätsverhältnis der beiden N≡C-Valenzabsorptionen im IR-Spektrum auf eine meridionale Konfiguration der drei Isonitril-Liganden hin. Das ¹H-NMR-Spektrum von 9b, das ein nur geringfügig verbreitertes Singulett erkennen läßt, liefert keine zusätzliche Information. Dagegen ist die Struktur von 9c eindeutig bestimmt: Das IR-Spektrum zeigt nur eine einzige Isonitril-Valenzabsorption (v(NC) 2120 cm⁻¹ in $CH_2Cl_2^{6}$), und im ¹H-NMR-Spektrum wird nur ein einziges Singulett ($\delta(CH_1) = 1.50$ in CDCl₃) beobachtet. Dies läßt sich nur mit einer oktaedrischen Anordnung der Liganden vereinbaren, bei der Cl bzw. NO die axialen und die vier Isonitrile die äquatorialen Positionen besetzen (Symmetrie C_{4n}). Dieselbe trans-Stellung von Halogen- und Nitrosyl-Liganden wird in der Regel bei oktaedrischen Monohalogeno-nitrosylmetall-Komplexen der Elemente Chrom^{2,5,9,10)}, Molybdän^{11,12)} und Wolfram^{7,12–14)} gefunden; es liegt daher nahe, diese offenbar bevorzugte trans-Anordnung auch für 9a und 9b anzunehmen¹⁵⁾. Die bei steigender Zahl der Isonitril-Liganden zu beobachtende gleichmäßige Abnahme der v(NO)-Frequenz in der Reihe 9a (1693 cm⁻¹), 9b (1660 cm⁻¹) und 9c (1626 cm⁻¹ in CH₂Cl₂) deutet ebenfalls auf einen gleichartigen Bau mit linearer Cl - Cr - NO-Gruppierung hin.

Auch die Reaktion von [Cr(CO)₂(NO)(CH₃CN)₃]PF₆ (3) mit *tert*-Butylisonitril (L) läßt sich nicht gezielt auf einer bestimmten Stufe anhalten: Es entstehen immer Gemi-

Tab. 1. Charakteristische IR- und ¹H-NMR-Daten der Komplexe 1-15

	, and the same of						١
Ÿ.	Komplex ^{h)}	Farbe	v(CO) (cm ⁻¹)	Infrarot-Spektrum v(NO) (cm ⁻¹)	v(CN) bzw, $v(NC)(cm^{-1})$	1 H-NMR δ (CH $_3$) (ppm)	Lit.
-	(C,H,)Cr(CO),	gelb	1971 s, 1890 sc)	i			
7	[CrCl(CO),(NO)](Solv.),	rot	2037 s, 1941 sa)	1678 sa)	1	1	3
		gelbbraun	2047 s, 1973 s ^{b)}	_	1	ı	
		rot	2075 vs ^{c)}	_	1	1	3)
3	[Cr(CO) ₂ (NO)(MeCN) ₃]PF ₆	rot	2068 s, 1990 sc)	1728 sc)	2320 w, 2298 wc)	$2.40; 2.37 (1:2)^{e}$	
4	[CrCl ₂ (NO) ₂] _n	orangebraun	I	1871 s, 1736 s ^{d)}	I	ı	3)
S	CrCl,(NO),(Solv.),	braun	1	1856 s, 1723 sa)	1	ı	3)
			ı	1872 s, 1738 s ^{b)}	-	ŀ	
9	[CrCl(NO)(MeCN)4]PF6	gelbgrün	I	1753 s ^{b)}	1	ŧ	
7	$[Cr(NO)(MeCN)_{\varsigma}](PF_{\varsigma})_{\varsigma}$	gelb	ı	1797 s ^{d)}	2328 m, 2307 m ^{d)}	1	4
∞	$CrCl_2(NO)_2L_2$	rotbraun	ı	1860 s, 1736 sc)	2225 sc)	1.57e,f)	
9a	$CrCl(CO)_2(NO)L_2$	gelb	2057 s, 2005 sc)	1693 s, brc)	2195 m, 2182 m ^{c)}	1	
9 p	CrCI(CO)(NO)I	gelb	1987 sc)	1660 sc)	2185 m, 2148 s ^{c)}	1.52e)	
96	CrCl(NO)L4	gelb	I	1626 s, brc)	2120 vs, 2075 w, shc)	1.50e)	
10	[CrCl(NO)L ₄]PF ₆	gelbbraun	ŧ	1752 s ^{c)}	2215 sc)	-	
11a	[Cr(CO) ₂ (NO)L ₃]PF ₆	orange	2069 s, 2022 sc)	1749 sc)	2216 m, 2202 m, 2188 m ^{c)}	$1.62; 1.56 (2:1)^{e}$	
11b	[Cr(CO)(NO)L4]PF6	rot	1996 sc)	1714 s ^{c)}	2208 m, 2188 m, 2154 sc)	1.58; 1.57; 1.54	
						$(1:2:1)^{e}$	
11c	[Cr(NO)L ₅]PF ₆	violett	1	1675 s, br ^{c)}	2200 m, 2128 vs, 2070 w, shc)	1.53e)	
12	$[Cr(NO)_2L_4](PF_6)_2$	gelb	ı	1915 m, 1820 mc)	2233 m ^{c)}	1.708)	
13	Cr(NO) ₂ L ₂ (i-mnt)	hellbraun	ı	1836 s, 1731 s ^{c)}	2210 s ^{c)}	1.57e)	
14	[Cr(NO)L ₅]Cl	violett	ı	1677 s, br ^{c)}	2200 m, 2128 vs, 2070 w, shc)	1.53e)	
15	$[Cr(NO)L_5](PF_6)_2$	gelb	ŀ	1790 sc)	2222 sc)	2.15e)	

a) THF. - b) CH_3CN . - c) CH_2CI_2 . - d) KBr. - c) $CDCI_3$. - f) Signal durch paramagnetische Verunreinigung verbreitert. - ϵ) $[D_6]$ Aceton. - h) Abkürzungen: $L = (CH_3)_3C - N \equiv C$, i-mnt²⁻ $= (NC)_2C = CS_2^{2-}$.

sche von 11a, 11b und 11c (Schema 1). Offenbar erfolgt die Substitution von Acetonitril durch $L=(CH_3)_3C-N\equiv C$ in 3 nur wenig schneller als die von CO. Bei geeigneter Wahl des Molverhältnisses 3:L und des Lösungsmittels können aber einzelne Komplexe bevorzugt erhalten werden. So liefert die Umsetzung in Dichlormethan vorwiegend 11a und 11b, während in Acetonitril hauptsächlich das völlig decarbonylierte violette $[Cr(NO)L_5]PF_6$ (11c) gebildet wird. Chromatographie an Kieselgel und nachfolgende fraktionierende Kristallisation machen jedoch eine vollständige Trennung von 11a-c möglich.

Das IR-Spektrum von 11a zeigt das typische Muster einer *cis*-Dicarbonylnitrosylchrom-Gruppierung und drei v(NC)-Absorptionen annähernd gleicher Intensität. Daraus folgt eine faciale Anordnung der drei *tert*-Butylisonitril-Liganden, wie sie auch im isoelektronischen Neutralkomplex Cr(CO)₃L₃ vorliegt ¹⁶⁾. Im Einklang mit dieser Struktur werden im ¹H-NMR-Spektrum zwei Singuletts im Intensitätsverhältnis 2:1 beobachtet. Auch 11b ist in seiner Struktur eindeutig bestimmt: die *cis*-Konfiguration der Liganden CO und NO folgt sowohl aus dem IR-Spektrum (drei v(NC)-Banden) als auch aus dem ¹H-NMR-Spektrum (drei Singuletts im Verhältnis 1:2:1). Die Struktur von 11c ergibt sich aus der analytischen Zusammensetzung. Es ist bemerkenswert, daß im ¹H-NMR-Spektrum von 11c¹⁷⁾ nicht zwischen den Isonitril-Liganden *cis* bzw. *trans* zur Nitrosylgruppe unterschieden werden kann, wie es beim homologen Molybdänkomplex [Mo(NO)L₅]PF₆¹¹⁾ möglich ist.

Die Dinitrosylchrom-Verbindungen 4 und 5 addieren tert-Butylisonitril (L) unter Bildung von $CrCl_2(NO)_2L_2$ (8). Dieser Komplex konnte nicht rein isoliert werden, weil er unter NO-Abspaltung teilweise in eine (bisher nicht charakterisierte) Mononitrosyl-Verbindung übergeht. Auch andere Komplexe des Typs $CrCl_2(NO)_2L_2$ ($L_2=2$ py, bipy, o-phen, 2 PPh $_3$, Ph $_2$ PCH $_2$ CH $_2$ PPh $_2$, 2 Cl $_1$, 2 Br $_1$) neigen zum Verlust eines NO-Liganden $_1$ 8). Mit überschüssigem tert-Butylisonitril (L) läßt sich $_1$ 8 in Gegenwart von NH $_4$ PF $_6$ und Wasser in das neue Salz [$Cr(NO)_2L_4$](PF $_6$) $_2$ (12) überführen, das im IR-Spektrum die höchsten bisher bei Chromkomplexen beobachteten Nitrosyl-Frequenzen (v(NO) 1915 und 1820 cm $_1$ 1 in CH_2Cl_2) zeigt. Entsprechende Molybdän-Kationen cis-[Mo(NO) $_2L_4$] $_1$ 2+ sind nicht bekannt; sie können weder auf dem hier für 12 skizzierten Weg über $MoCl_2(NO)_2L_2$ 8) noch aus dem Acetonitril-Komplex [$Mo(NO)_2(CH_3CN)_4$] $_1$ 2+ $_1$ 10 synthetisiert werden. Die beiden Chloro-Liganden in $_1$ 8 lassen sich auch durch Chelat-Liganden wie 2,2-Dicyan-1,1-ethendithiolat, ($NC)_2C=CS_2$ 1 (i-mnt) $_1$ 2- ersetzen; bei der Bildung von $Mo(NO)_2L_2$ 2 (i-mnt) (13) (v(NO) 1836 und 1731 cm $_1$ 1 in Mo(NO)2 entsteht wiederum eine Mononitrosyl-Verbindung (v(NO) 1703 cm $_1$ 1 als Nebenprodukt.

Nach den IR-Spektren müssen die beiden NO-Liganden in **8**, **12** und **13** jeweils *cis*-ständig zueinander angeordnet sein. In den IR-Spektren von **8** und **13** tritt jeweils nur

eine v(NC)-Absorption auf. Dies kann jedoch nicht als Beweis für eine *trans*-Anordnung der *tert*-Butylisonitril-Liganden gewertet werden, nachdem bei allen Komplexen, in denen Chrom in der formalen Oxidationsstufe +2 vorliegt, unabhängig von der Zahl und der Anordnung der Isonitril-Liganden stets nur eine v(NC)-Absorption beobachtet werden kann. Auch im ¹H-NMR-Spektrum ergeben alle *tert*-Butylisonitril-Liganden nur ein einziges Singulett. Eine *trans*-Stellung der Isonitril-Liganden in 8 und 13 erscheint aber im Hinblick auf die Strukturdiskussion bei den Komplexen 9a-c (s. o.) wahrscheinlich.

Die vier Acetonitril-Liganden in $[CrCl(NO)(CH_3CN)_4]PF_6$ (6) lassen sich leicht gegen *tert*-Butylisonitril austauschen. Das Kation des so entstehenden Salzes 10 sollte – in Analogie zu 9c – die Liganden Cl und NO wiederum in der *trans*-Konfiguration enthalten.

Die Chemie von $[Cr(NO)(CH_3CN)_5](PF_6)_2$ (7) wurde vor kurzem ausführlich beschrieben ⁵⁾, nachdem die Umsetzungen von 7 mit Isonitrilen schon früher untersucht worden waren ¹⁷⁾. Mit einem Überschuß an *tert*-Butylisonitril (L) erfolgt sowohl Ligandenaustausch als auch Reduktion zu $[Cr(NO)L_5]PF_6$ (11c). Durch Oxidation von 11c mit $NOPF_6$ oder $AgPF_6$ läßt sich jedoch das gelbe Salz 15 des Dikations $[Cr(NO)L_5]^{2+}$ erhalten.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung unserer Arbeiten.

Experimenteller Teil

IR-Spektren: Perkin-Elmer, Modell 297. - ¹H-NMR-Spektren: Jeol JNM-PMX 60 und Jeol FX 90 Q (Lösungsmittel CDCl₃ oder [D₆]Aceton, TMS als innerer Standard).

Alle Untersuchungen wurden unter gereinigtem Stickstoff als Schutzgas durchgeführt; die Lösungsmittel waren wasserfrei und N_2 -gesättigt. Das zur Chromatographie verwendete Kieselgel (Merck, Kieselgel 60, Korngröße 0.063-0.200~mm) wurde i. Hochvak. von Sauerstoff befreit und unter Stickstoff aufbewahrt. Die Zers.-Punkte wurden im abgeschmolzenen Röhrchen unter Stickstoff bestimmt; sie sind nicht korrigiert.

Nitrosylchlorid, Nitrosylhexafluorophosphat und tert-Butylisonitril waren käufliche Produkte. (Benzol)tricarbonylchrom (1)¹⁸⁾ und Kalium-2,2-dicyan-1,1-ethendithiolat, K_2 (i-mnt)¹⁹⁾, wurden nach Literaturvorschriften dargestellt.

1. Darstellung der Nitrosylchrom-Zwischenstufen

Lösungen von 2 wurden nach Literaturvorschrift $^{2)}$ durch Umsetzung einer Lösung von 1 mit der äquimolaren Menge einer Lösung von CINO im entsprechenden Lösungsmittel bei $-78\,^{\circ}$ C (CH₂Cl₂, THF) oder $-30\,^{\circ}$ C (Acetonitril) erhalten.

Chem. Ber. 115 (1982)

Tris(acetonitril)dicarbonylnitrosylchrom-hexafluorophosphat (3): Eine Lösung von 0.22 g (1.0 mmol) 1 in 20 ml Acetonitril wurde bei $-30\,^{\circ}$ C mit der äquimolaren Menge einer Acetonitril-Lösung von NOPF₆ (4 ml, 1.0 mmol) versetzt und bei Raumtemp. zur Trockne gebracht. Der ölige Rückstand wurde in 20 ml CH₂Cl₂ gelöst. Nach Filtration über Filterflocken wurde die rote Lösung von 3 für die weiteren Umsetzungen verwendet. Versuche, 3 in Substanz zu isolieren, führten zu Zersetzung.

Dichlorodinitrosylchrom (4): Zu einer Lösung von 0.43 g (2.0 mmol) 1 in 10 ml CH_2Cl_2 wurde ein Überschuß einer Lösung von ClNO in CH_2Cl_2 (8 ml, 6.0 mmol) gegeben. Nach 10 min wurden die flüchtigen Bestandteile des Reaktionsgemisches (CH_2Cl_2 , überschüssiges ClNO, Benzol) i. Vak. entfernt. In quantitativer Ausbeute blieb 4 als orangebraunes Pulver zurück ³⁾.

Lösungen von 5 wurden durch Auflösen von 4 im entsprechenden Lösungsmittel erhalten.

2. Isonitril-Komplexe

Bis(tert-butylisonitril)dichlorodinitrosylchrom (8): 0.45 ml (4.0 mmol) tert-Butylisonitril wurden zu einer Suspension von 2.0 mmol 4 in 20 ml CH₂Cl₂ gegeben. 4 löste sich vollständig unter Bildung einer rotbraunen Lösung von 8. Beim Abziehen des Solvens blieb 8 als violettrotes Öl zurück. Alle Versuche, 8 zu kristallisieren, führten zu Produkten, deren Analysen nur ein N/Cr-Verhältnis von etwa 3.5 ergaben.

Tris(tert-butylisonitril)carbonylchloronitrosylchrom (9b): Zu einer Lösung von 1.0 mmol 2 in 20 ml THF wurden bei $-78\,^{\circ}$ C 0.22 ml (2.0 mmol) tert-Butylisonitril gegeben. Danach wurde 15 h bei Raumtemp. gerührt. Die gelbgrüne Lösung wurde filtriert, auf die Hälfte eingeengt und nach Zugabe von Pentan (bis zur beginnenden Trübung) bei $-20\,^{\circ}$ C zur Kristallisation gebracht. Die gelben Kristalle wurden noch einmal aus THF/Pentan umkristallisiert. Zers. unter allmählicher Dunkelfärbung oberhalb etwa 120 °C. Ausb. 0.14 g (0.35 mmol, 35%).

```
C<sub>16</sub>H<sub>27</sub>ClCrN<sub>4</sub>O<sub>2</sub> (394.9) Ber. C 48.67 H 6.89 Cr 13.17 N 14.19
Gef. C 47.86 H 6.94 Cr 13.36 N 13.80
```

Tetrakis(tert-butylisonitril)chloronitrosylchrom (9c): Eine Lösung von 2.0 mmol 2 in 40 ml THF wurde bei $-78\,^{\circ}$ C mit 1 ml (8.85 mmol) tert-Butylisonitril versetzt, anschließend $\frac{1}{2}$ h unter Rückfluß erhitzt und dann zur Trockne gebracht. Der Rückstand wurde in 10 ml Benzol aufgenommen und an Kieselgel in Hexan chromatographiert (Säule 35 cm \times 1 cm). 9c wurde mit THF eluiert und aus THF/Pentan kristallisiert. Gelbe Kristalle, die sich oberhalb von etwa 120 °C zersetzen ohne zu schmelzen. Ausb. 0.45 g (1.00 mmol, 50%).

```
C<sub>20</sub>H<sub>36</sub>ClCrN<sub>5</sub>O (450.0) Ber. C 53.38 H 8.06 Cr 11.56 N 15.56
Gef. C 53.46 H 8.15 Cr 11.42 N 15.31
```

Tetrakis(tert-butylisonitril)chloronitrosylchrom-hexafluorophosphat (10): Zu einer Lösung von 0.22 g (1.0 mmol) 1 in 30 ml Acetonitril wurden bei -30 °C nacheinander äquimolare Mengen von Acetonitril-Lösungen von ClNO (2.5 ml, 1.0 mmol) und NOPF₆ (4 ml, 1.0 mmol) zugetropft. Die Bildung der Zwischenstufen 2 und 6 wurde anhand der v(CO)- und v(NO)-Absorptionen im IR-Spektrum kontrolliert. Nach Zugabe von 0.45 ml (4.0 mmol) tert-Butylisonitril wurde 15 h bei Raumtemp. gerührt und anschließend zur Trockne gebracht. Der Rückstand wurde in 10 ml CH_2Cl_2 gelöst und auf eine 5 cm hoch mit Kieselgel beschickte Fritte gebracht. Elution mit CH_2Cl_2 /Diethylether (1:1) ergab eine rotbraune Lösung, die auf ca. 5 ml eingeengt und dann mit 30 ml Diethylether und 40 ml Hexan überschichtet wurde. Im Laufe von 2 d bildeten sich braune Kristalle, die beim Trocknen i. Hochvak. zu einem gelbbraunen Pulver zerbröckelten. Zers.-P. 143 °C. Ausb. 0.25 g (0.42 mmol, 42%).

```
C_{20}H_{36}ClCrF_6N_5OP (595.0) Ber. C 40.38 H 6.10 Cl 5.96 Cr 8.74 F 19.16 N 11.77 P 5.21 Gef. C 40.21 H 6.16 Cl 5.90 Cr 8.51 F 18.60 N 11.81 P 5.09
```

Tris(tert-butylisonitril)dicarbonylnitrosylchrom-hexafluorophosphat (11a): Eine Lösung von 1.0 mmol 3 in 20 ml CH_2Cl_2 wurde mit 0.33 ml (3.0 mmol) tert-Butylisonitril versetzt und 2 h gerührt. Das Reaktionsgemisch wurde auf Kieselgel in CH_2Cl_2 (Säule 10 cm \times 1.5 cm) aufgetragen. Zuerst wurde mit 100 ml CH_2Cl_2 , dann mit 100 ml CH_2Cl_2 /THF (20:1) eluiert. Das erste Eluat enthielt hauptsächlich 11b und 11c neben wenig 11a, das zweite Eluat 11a und 11b neben wenig 11c. Die Komplexgemische wurden schließlich durch fraktionierende Kristallisation aus CH_2Cl_2 /Diethylether/Hexan in die Komponenten 11a, 11b und 11c getrennt. Ausb. an 11a: 0.15 g (0.28 mmol, 28%). Orange Kristalle, die bei 114–115 °C unter Zers. schmelzen.

$$C_{17}H_{27}CrF_6N_4O_3P$$
 (532.4) Ber. C 38.35 H 5.11 Cr 9.77 N 10.52 Gef. C 38.60 H 5.29 Cr 9.79 N 10.15

Ausb. an 11b: 0.08 g (0.14 mmol, 14%). Ausb. an 11c: 0.03 g (0.05 mmol, 5%).

Tetrakis(tert-butylisonitril)carbonylnitrosylchrom-hexafluorophosphat (11b): 0.9 ml (8.0 mmol) tert-Butylisonitril wurden mit einer Lösung von 2.0 mmol 3 in 20 ml $\rm CH_2Cl_2$ zur Reaktion gebracht. Nach 3 h wurde die Reaktionslösung an Kieselgel in $\rm CH_2Cl_2$ chromatographiert (Säule 10 cm \times 1.5 cm). Elution mit $\rm CH_2Cl_2$ ergab eine rote Lösung, die auf 20 ml eingeengt, mit 50 ml Diethylether und 30 ml Hexan versetzt und bei $-20\,^{\circ}$ C zur Kristallisation gebracht wurde. Rote Kristalle, die bei 124 – 126 $^{\circ}$ C unter Zers. schmelzen. Ausb. 0.43 g (0.73 mmol, 36%).

Tetrakis(tert-butylisonitril)dinitrosylchrom-bis(hexafluorophosphat) (12): Eine Lösung von 2.0 mmol 5 in 10 ml THF wurde mit 0.9 ml (8.0 mmol) tert-Butylisonitril und 0.7 g (4.29 mmol) NH $_4$ PF $_6$ versetzt. Dann wurden unter kräftigem Rühren langsam 100 ml Wasser zugetropft; dabei bildete sich allmählich ein ockerfarbener Niederschlag. Nach 1 h wurde der Niederschlag abfiltriert, mit Wasser ausgewaschen, i. Hochvak. getrocknet und anschließend aus Acetonitril/Diethylether umgefällt. Gelbes Pulver, das sich ab etwa 150 °C unter Dunkelfärbung zersetzt. Ausb. 0.74 g (1.00 mmol, 50%).

Bis(tert-butylisonitril)(2,2-dicyan-1,1-ethendithiolato)dinitrosylchrom (13): Eine Lösung von 2.0 mmol 8 in 30 ml Aceton wurde mit 0.44 g (2.0 mmol) $K_2S_2C_2(CN)_2$ versetzt und 1 h gerührt. Das Reaktionsgemisch wurde über Filterflocken filtriert und zur Trockne gebracht. Danach wurde der Rückstand in 30 ml CH_2Cl_2 aufgenommen und an Kieselgel in CH_2Cl_2 chromatographiert (Säule 15 cm \times 1.5 cm). Elution mit CH_2Cl_2 ergab eine hellbraune Lösung, die auf etwa 10 ml eingeengt und mit 20 ml Diethylether und 20 ml Pentan versetzt wurde. Der hellbraune Niederschlag wurde noch einmal aus CH_2Cl_2 /Diethylether/Pentan umkristallisiert. Feinkristallines, hellbraunes Pulver, das sich ab etwa 140 °C unter Dunkelfärbung zersetzt, ohne zu schmelzen. Ausb. 0.34 g (0.81 mmol, 40%).

M. Herberhold und A. Razavi, Angew. Chem. 84, 1150 (1972); Angew. Chem., Int. Ed. Engl. 11, 1092 (1972).

²⁾ M. Herberhold und W. Bernhagen, Angew. Chem. 88, 651 (1976); Angew. Chem., Int. Ed. Engl. 15, 617 (1976).

³⁾ M. Herberhold und L. Haumaier, J. Organomet. Chem. 160, 101 (1978).

⁴⁾ M. Herberhold und L. Haumaier, Z. Naturforsch., Teil B 35, 1277 (1980).

- 5) S. Clamp, N. G. Connelly, G. E. Taylor und T. S. Louttit, J. Chem. Soc., Dalton Trans. **1980**, 2162.
- 6) Das Auftreten einer Schulter bei 2075 cm⁻¹ im IR-Spektrum von 9c kann auf die Symmetriestörung zurückgeführt werden, die durch die sperrigen tert-Butylgruppen verursacht wird. Eine entsprechende Schulter wird bei WI(NO)L₄⁷⁾ beobachtet; sie fehlt aber beim Cyclohexylisonitril-Komplex CrCl(NO)(CNC₆H₁₁)₄8).
- 7) R. B. King, M. S. Saran und S. P. Anand, Inorg. Chem. 13, 3038 (1974).
- 8) M. Herberhold und L. Haumaier, unveröffentlichte Ergebnisse.
- 9) N. G. Connelly, B. A. Kelly, R. L. Kelly und P. Woodward, J. Chem. Soc., Dalton Trans. 1976, 699.
- 10) R. D. Feltham, W. Silverthorn und G. McPherson, Inorg. Chem. 8, 344 (1969).
- 11) J. A. McCleverty und J. Williams, Transition Met. Chem. 1, 288 (1976).
- E. E. Isaacs und W. A. G. Graham, J. Organomet. Chem. 99, 119 (1975).
 C. G. Barraclough, A. Bowden, R. Colton und C. J. Commons, Aust. J. Chem. 26, 241 (1973).
- 14) R. Colton und C. J. Commons, Aust. J. Chem. 26, 1487, 1493 (1973).
- 15) Komplexe dieses Typs mit cis-ständigen Halogen- und Nitrosyl-Liganden sind sehr selten; ein Beispiel liegt im System MoX(NO)(Ph₂PCH₂CH₂PPh₂)₂ (X = Cl, Br) vor, wo cis- und trans-Isomere auftreten: vgl. T. Tatsumi, K. Sekizawa und H. Tominaga, Bull. Chem. Soc. Jpn. 53, 2297 (1980).
- 16) J. A. Connor, E. M. Jones, G. K. McEwen, M. K. Lloyd und J. A. McCleverty, J. Chem. Soc., Dalton Trans. 1972, 1246.
- 17) M. K. Lloyd und J. A. McCleverty, J. Organomet. Chem. 61, 261 (1973).
- ¹⁸⁾ M. D. Rausch, J. Org. Chem. 39, 1787 (1974).
- 19) R. Gompper und W. Töpfl, Chem. Ber. 95, 2861 (1962).

[306/81]